पिछला

ⓘ एक्स किरण नलिका. उस निर्वात नलिका को एक्स किरण नलिका या एक्सरे ट्यूब कहते हैं जो एक्स किरण उत्पन्न करती है। एक्सरे नलिकाओं का विकास क्रुक्स की नलिका से हुआ जिसस ..


एक्स किरण नलिका
                                     

ⓘ एक्स किरण नलिका

उस निर्वात नलिका को एक्स किरण नलिका या एक्सरे ट्यूब कहते हैं जो एक्स किरण उत्पन्न करती है। एक्सरे नलिकाओं का विकास क्रुक्स की नलिका से हुआ जिससे सर्वप्रथमेक्सरे खोजा गया था। इन नलिकाओं से प्राप्त एक्स किरणों के अनेक उपयोग हैं, जैसे- रेडियोग्राफी, कैट अड्डों पर इस्तेमाल होने वाले स्ककेनर, एक्सरे-क्रिस्टलोग्राफी इत्यादी।

                                     

1. परिचय

विभव के कारण इलेक्ट्रान को ऊर्जा e×v प्राप्त होती, जहाँ e= इलेक्ट्रान का आवेश, तथा v विभव। यदि इतनी कुल ऊर्जा धनाग्र के अणुओं में स्थानांतरित हो जाए तथा इस ऊर्जा का एक्सरे में परिवर्तन हो, तो उत्सर्जित एक्सरे की आवृति निम्नलिखित समीकरण द्वारा प्राप्त होगी:

e × v = प्लांक का स्थिरांक x आवृत्ति. 1

समीकरण 2 अनेक प्रयोगों में प्रमाणित हुआ है। प्लांक के स्थिरांक का मान 6.62×10 -27 अर्ग-सेकंड है। विद्युच्चुंबकीय तरंगों के लिए आवृत्ति तथा तरंगदैर्घ्य में निम्नलिखित संबंध होता है:

तरगदैर्घ्य × आवृत्ति = विद्युत्तरंग का वेग = 2.99×10 8 मी. प्रति सेंकड

यदि विभव वोल्ट में ज्ञात हो, तो उत्पादित एक्सरे का तरंगदैर्घ्य आंगस्त्रम एककों में निम्नलिखित समीकरण द्वारा सरलता से निकाला जा सकता है:

तरंगदैर्घ्य आंगस्त्रमों में = 12403 / वोल्ट. 2

समीकरण 2 के अनुसार एक्सरे का जो तरंगदैर्घ्य प्राप्त होता है वह केवल इस अनुमान पर आधारित है कि ऋणाग्र से धनाग्र तक पहुँचने में इलेक्ट्रान को प्राप्त ऊर्जा e×v का संपूर्ण भाग विद्युच्चुंबकीय तरंगों में परिवर्तित होकर समीकरण 1 के अनुसार विकिरण का एक ही क्वांटम देता है। किंतु सब इलेक्ट्रानों के लिए यह ठीक नहीं है। विद्युच्चुंबकीय विकिरण उत्पन्न होने के पूर्व इलेक्ट्रान की ऊर्जा के अंशत: अथवा संपूर्णत: नष्ट होने की बहुत अधिक संभावना रहती है। इसके अनेक कारण होते हैं। जिस धातु का धनाग्र हो उस धातु के परमाणुओं से प्रथम आघात होने पर इलेक्ट्रान उस धनाग्र के तल के भीतर जाते हैं। इन परमाणुओं से इलेक्ट्रानों की गति में प्रतिरोध होता है, क्योंकि वे परमाणु भी अन्य इलेक्ट्रानों से परिवेष्टित होते हैं। प्रत्येक धातु में धात्वीय इलेक्ट्रान होते हैं जिनके कारण धातुएँ विद्युच्चालक होती हैं। धनाग्र में प्रवेश करते समय ऋणाग्र से आनेवाले इलेक्ट्रानों तथा धनाग्र के आंतर इलेक्ट्रानों में अनेक संघात होते हैं और प्रत्येक संघात में बाह्य इलेक्ट्रानों की ऊर्जा कम होती जाती है। अत: अंत में जब बाह्य इलेक्ट्रानों से विद्युच्चुंबकीय तरंगें उत्पन्न होती हैं तब इन इलेक्ट्रानों की ऊर्जा एक समान नहीं होती। विभवांतर v से महतम ऊर्जा e×v होंगी, किंतु इस महत्तम ऊर्जा के इलेक्ट्रान–अर्थात्‌ वे जिनसे एक भी संघात नहीं हुआ हैं अत्यंत अल्प होते हैं; अधिकतर इलेक्ट्रानों की ऊर्जा इससे कम होती है। इसलिए उत्पादित एक्सरे एकवर्ण नहीं होता; हमें एक्सरे का अविच्छिन्न वर्णक्रम continuous spectrum मिलता है। श्वेत प्रकाश का वर्णक्रम जिस प्रकार का होता है, उसी प्रकार का अविच्छिन्न वर्णक्रम एक्सरे का भी होता है; अत: एक्सरे के अविच्छिन्न वर्णक्रम को श्वेत विकिरण भी कहते हैं।

रंटजन ने जिस प्रकार के उपकरणों की सहायता से एक्सरे का आविषकार किया था प्रारंभ के कतिपय वर्षो तक उसी प्रकार के उपकरण उपयोग में लाए जाते थे। इनमें थोड़ा बहुत सुधार हुआ और शिअरर, हेडिंग, ज़ीगब्ह्रा इत्यादि वैज्ञानिकों ने ऐसी एक्सरे नलिकाओं की उपज्ञा की, जिनके धनाग्र सरलता से बदले जा सकते हैं किंतु इन सब वायु-विसर्जन-नलिकाओं में एक विशेष दोष यह था कि इनमें विद्युद्धारा का तथा विभव का स्वतंत्रतापूर्वक परिवर्तन नहीं किया जा सकता था। यह दोष कूलिज की एक्सरे नलिका में दूकर दिया गया।

                                     

2. कूलिज की एक्सरे नलिका

1913 में कूलिज Coolidge ने विभिन्न तत्वों पर इलेक्ट्रानों का उत्पादन करके एक्सरे नलिका बनायी जो कूलिज नलिका के नाम से जानी जाती है।

कूलिज ने इलेक्ट्रान प्राप्त करने के लिए वायु में विद्युद्विसर्जन के बदले उष्मीय आयनों thermal electrons का उपयोग किया। धातु के तंतु में विद्युत धारा प्रवाहित करने से तंतु गरम हो जाता है और निर्वात में धारा अधिक बढ़ाने से उससे प्रकाश का उत्सर्जन होने लगता है जैसा तप्ततंतु विद्युद्दीप incandescent lamp में होता है)। इस तप्ततंतु से प्रकाश के साथ-साथ इलेक्ट्रान भी निकलते हैं और यदि निर्वात में तप्त तंतु के समीप धातु की एक पट्टी रखकर उसको धन विद्युद्विभव दिया जाए तो धारामापी में विद्युधारा दिखाई देगी। किंतु इस रीति से इलेक्ट्रान प्राप्त करने के लिए अति उच्च निर्वात ultra high vacuum की आवश्यकता होती है।

कूलिज ने कांच का एक विशाल बल्ब लेकर उसके केंद्र में उच्च गलनांकवाली धातु का एक टुकड़ा रखा और उसके अभिमुख टंग्स्टन तंतु के संर्पिल के पर्याप्त चक्र स्थापित करके संपूर्ण बल्ब को पूर्णत: निर्वात किया। यदि तंतु के इस सर्पिल में पर्याप्त विद्युद्धारा प्रवाहित की जाए तो तंतु तप्त हो जाता है तथा उससे इलेक्ट्रान प्राप्त होते हैं। इन इलेक्ट्रानों को विभव बढ़ाकर उचित ऊर्जा दी जा सकती है। अत्युच्च निर्वात होने के कारण वायु के परमाणुओं के संघात नहीं होते, अत: इलेक्ट्रान संपूर्ण ऊर्जा के साथ धातु से संघात करते हैं और एक्सरे का उत्पादन होता है। कूलिज की एक्सरे नलिका की मुख्य सुविधा यह है कि उत्पादित एक्सरे की तीव्रता तथा कठोरता में इच्छानुसार परिवर्तन किया जा सकता है। विभव को स्थिर रखकर तंतु में यदि अधिक विद्युद्धारा प्रवाहित की जाए तो तंतु का ताप बढ़ने के कारण रिचर्ड्‌सन्‌ के समीकरण के अनुसार इलेक्ट्रानों की संख्या भी बढ़ती है, अत: इलेक्ट्रानों से उत्पन्न एक्सरे की तीव्रता बढ़ जाती है। इलेक्ट्रानों की संख्या अथवा उष्मीय आयन धारा स्थिर रखकर अर्थात्‌ टंग्स्टन तंतु में विद्युद्धारा स्थिर रखकर यदि विभव बढ़ाया जाए, तो समीकरण 1 के अनुसार न्यूनतम तरंगदैर्घ्य कम हो जाएगा और उत्पन्न एक्सरे की कठोरता अधिक हो जाएगी। इस कूलिज नलिका पर आधारित, किंतु आवश्यक परिवर्तनों से युक्त अनेक प्रकार की एक्सरे नलिकाओं में एक अपचायी परिणामित्र स्टेप डाउन ट्रैंसफॉर्मर से आवश्यक प्रत्यावर्ती धारा पहुँचाई जाती हैं और एक उच्चायी परिणामित्र स्टेप अप्‌ ट्रैंसफ़ार्मर से आवश्यक प्रत्यावर्ती उच्च विभव उत्पन्न किया जाता है। कूलिज नलिका स्वयं ऋजुकारी है।

एक्सरे नलिका में इलेक्ट्रानों में जो ऊर्जा होती है उसके दो प्रतिशत से कुछ कम भाग का ही एक्सरे में परिवर्तन होता है और शेष 98 प्रतिशत से कुछ अधिक भाग उष्मा उत्पन्न करने में व्यय होता है। लक्ष्य का, अर्थात्‌ उस धातु के टुकड़े का जिसपर अल्पवधि में इलेक्ट्रानों के असंख्य संघात होते हैं, ताप इतना अधिक हो जाता है कि उसके गल जाने की संभावना रहती है। लक्ष्य को ठंडा रखने के लिए पानी के निरंतर प्रवाह का आयोजन किया जाता है। लक्ष्य में उत्पन्न हुई उष्मा को इस प्रकार बराबर हटाते रहने से एक्सरे नलिका से अधिक समय तक कार्य लेने में कोई कठिनाई नहीं होती।

                                     

3. एक्सरे नलिका में अन्य सुधार

एक्सरे का अध्ययन भौतिकी की दृष्टि से अत्यंत महत्वपूर्ण तो था ही, धीरे-धीरे एक्सरे का उपयोग, जैसा ऊपर बताया गया है, आयुर्विज्ञान और उद्योग में भी होने लगा। इन सब कार्यो के लिए अधिक तीव्र तथा कठोर एक्सरे के उत्पादन की आवश्यकता बढ़ती गई। इस समस्या को हल करने के लिए एक्सरे के क्षेत्र में कार्य करनेवाले अनेक वैज्ञानिकों ने भिन्न-भिन्न प्रकार की नलिकाएँ तथा उपकरणों की उपज्ञा की। तीव्रता बढ़ाने के लिए इलेक्ट्रानों की संख्या में वृद्धि होना आवश्यक है। तंतु में विद्युद्धारा बढ़ाने से इलेक्ट्रानों की संख्या अवश्य बढ़ती हैं, किंतु तंतु का ताप अधिक बढ़ने से उसकी धातु का वाष्पन होता है और उसके क्षीण होकर टूटने की संभावना रहती है। साथ ही, इलेक्ट्रानों के संघातों से लक्ष्य में जो उष्मा उत्पन्न होती है वह बढ़ती जाती है, इससे लक्ष्य के गलने की संभावना बढ़ जाती है। इन दोनों कठिनाइयों को दूर करने के लिए भिन्न-भिन्न प्रकार के प्रयत्न हुए और उनमें से कतिपय सफल भी रहे। आक्साइड विलेपित तंतुओं से निम्न ताप पर अधिक इलेक्ट्रान धारा प्राप्त हो सकती है; फिर, पर्याप्त लंबाई का तंतुसर्पिल लेकर इष्ट धारा प्राप्त हो सकती है। साधारणत: एक्सरे नलिकाओं में 10 से 150 मिलिएंपिअर विद्युद्धारा का उपयोग होता है; वर्तमान काल में उचित तंतुओं से तथा उपसाधनों से 1 अंपिअर अथवा उससे अधिक इलेक्ट्रान धारा सरलता से प्राप्त हो सकती है। इस तीव्र इलेक्ट्रान धारा से लक्ष्य में जो प्रचंड उष्मा उत्पन्न होती है उसको कम करने के लिए फ़िलिप्स, जनरल इलेक्ट्रिक, मैचलेट इत्यादि एक्सरे उपकरणों के निर्माताओं ने स्थिर लक्ष्य के स्थान पर घूर्णन करनेवाले मंडलक का आयोजन किया है। घूर्णन से इलेक्ट्रानों के संघात एक ही स्थान पर नहीं होते और जिस स्थान पर उष्मा उत्पन्न हुई है उसके पुन: संघातस्थान पर आने के पूर्व विकिरण द्वारा उष्मा का व्यय हो जाता है। घूर्णित लक्ष्य की एक्सरे नलिकाओं में से जो एक्सरे प्राप्त होता है उसकी तीव्रता स्थिर लक्ष्य कूलिज नलिका से उत्पन्न एक्सरे की तीव्रता की अपेक्षा अनेक गुनी अधिक होती है, अर्थात्‌ फोटो खींचने में प्रकाशदर्शन एक्सपोज़र के समय में बहुत बचत होती है।

एक्सरे की तीव्रता तथा कठोरता बढ़ाने का दूसरा भी एक उपाय है। नलिका का विद्युद्विभव बढ़ाने से भी तीव्रता तथा कठोरता दोनों ही बढ़ती है। समीकरण 2 के अनुसार विभव बढ़ाने से न्यूनतम तरंगदैर्घ्य घटता जाता है और विभव पर्याप्त बढ़ाने से गामा किरणों के सदृश तरंगदैर्घ्य वाले एक्सरे का उत्पादन प्रयोगशालाओं में हो सकता है। विभव बढ़ाने से एक्सरे की तीव्रता भी बढ़ती हैं; तीव्रता विद्युद्धिभव के घन तृतीय घात की समानुपाती होती है। यद्यपि साधारण उच्च विभव के परिणामित्र उपलब्ध थे तथापि एक्सरे उत्पादन के लिए पर्याप्त उच्च विभव प्राप्त करने में अनेक कठिनाइयाँ थीं। जनरल इलेक्ट्रिक, मैचलेट इत्यादि निर्माताओं ने अनेक अनुसंधानों के पश्चात्‌ एक करोड़ अनुसंधानों के पश्चात्‌ एक करोड़ वोल्ट तक के विभाग द्वारा एक्सरे उत्पन्न करनेवाले उपकरणों का निर्माण किया है। इससे भी अधिक प्रगति इलिनॉय के प्राध्यापक कर्स्ट ने बीटाट्रीन का उपयोग करके की है। बीटाट्रोन से 40 करोड़ वोल्ट तक के विभव द्वारा एक्सरे का उत्पादन हो सकता है। प्रंचड विभव से उत्पन्न ये एक्सरे अत्यंत तीव्र तथा प्रवेशशील होते हैं। अत्यंत तीव्रतावाले एक्सरे उत्पन्न करने के लिए अन्य साधनों का भी उपयोग किया जाता है, जिनमें उल्लोल-जनित्र सर्ज जेनरेटर विशेष उल्लेखनीय है। प्रकाश से जैसे चलचित्र लिए जाते हैं वैसे ही एक्सरे से भी लिए जा सकते हैं और वैज्ञानिक दृष्टि से उपयुक्त होने के निमित इन चित्रों को अत्यंत अल्प समय में 10 -6 सेंकड में लेने की आवश्यकता होती हैं। उल्लोल-जनित्र के विसर्जन से अत्यंत उच्च उत्सर्जन धाराओं के नियंत्रित विस्फोट उत्पन्न किए जाते हैं। यहाँ इलेक्ट्रानों का उत्पादन उष्ण विद्युदग्र से नहीं होता, अपितु शीत विद्युदग्र से तीव्र विद्युत्‌ क्षेत्र के कारण इलेक्ट्रानों का उत्सर्जन होता है।

                                     
  • ट र ज ट क र प म बन न और प रत य क क ल ए एक स - क रण नल क बन न अत य त अस व ध जनक ह अत: एक स - क रण द व र द ए ह ए पद र थ क परम ण ओ क उत त ज त
  • एक स - क रण य एक स र X - Ray एक प रक र क व द य त च म बक य व क रण ह ज सक तर गद र घ य 10 स 0.01 न न म टर ह त ह यह च क त स म न द न diagnostics
  • इस ल ख य भ ग क ऍक स क रण क स थ व लय कर द य ज ए व र त क ष - व क रण एक स - र स न र म त व द य त च म बक य व क रण क एक र प ह एक स - र क तर ग द र घ य
  • Widerøe न क य थ र ख क त वरक क बह त स उपय ग ह इनक उपय ग एक स - क रण उत पन न करन म ह त ह य उच च उर ज व ल कण त वरक क इ ज क टर अर थ त
  • axial rotaion य मर ड twist उत पन न ह न क डर बन रहत ह और जब एक स क रण क तथ अन य च क त स न ष फल स द ध ह त ह तब यह शल यकर म क य ज त ह
  • ज त ह तब उन इल क ट र न क व य भ ग ठ क उस प रक र स ह त ह ज स एक स - क रण एक स - र ज क क रण व ल क इस घटन क इल क ट र न व वर तन इल क ट र न - ड फ र क शन
  • व द य त क च लन इन स ल शन क ल य बल ब ल म प स ट व प क चर - ट य ब, एक स - क रण ट य ब क ल य थ न - फ ल म क ट ग क ल य स न दर य करण, प रक शक य य व द य त
  • म र ड य धर म तत व य ड ई क प रय ग क य ज त ह त क रक त व ह न नल क ओ क एक स र द व र स फ स फ द ख ज सक ड ज टल सबस ट र क शन ए ज य ग र फ न मक
                                     
  • अ ग ल स दब कर प ड क स थ त स व रण क स थ त क अन म न क य ज त ह एक स क रण द व र पर क ष स भ र ग क पहच नन म बह त सह यत म लत ह ज चआह र
  • फ ट ड य ड Photodiode क थ ड क रण नल क Cathode ray tube CRT Vacuum fluorescent display VFD फ ट मल ट प ल यर नल क एक स - र नल क Gas discharge tube Obsolete:
  • जनन ग क शल यकर म द व र न क ल द न पड त ह तथ र ड यम, एव ग भ र एक स क रण द ज त ह 3 क र यन इप थ ल य म - यह अर ब द बह त कम ह त ह ह म ट म
  • ज न ह सकत ह आमत र पर लक षण क आध र पर प रथम द रष टय पहच न और एक स - क रण X - Rays और ज न ट क पर क षण द व र स प ष ट क य ज त ह ट र चर क ल न स
  • र ड य ग र फ एक स - र क उपय ग करत ह ए ऊतक क इम ज ग, ब हर च हर भ ग श सन क य ज त ह ए ज य ग र फ एक स रक त व ह क ओ क अ दर रख क रण स ख न बह

शब्दकोश

अनुवाद
Free and no ads
no need to download or install

Pino - logical board game which is based on tactics and strategy. In general this is a remix of chess, checkers and corners. The game develops imagination, concentration, teaches how to solve tasks, plan their own actions and of course to think logically. It does not matter how much pieces you have, the main thing is how they are placement!

online intellectual game →