पिछला

ⓘ अन्तर्दहन इंजन. ऐसा इंजन है जिसमें ईंधन एवं आक्सीकारक सभी तरफ से बन्द एक में जलते हैं। दहन की इस क्रिया में प्रायः हवा ही का काम करती है। जिस बन्द कक्ष में दहन ..


अन्तर्दहन इंजन
                                     

ⓘ अन्तर्दहन इंजन

ऐसा इंजन है जिसमें ईंधन एवं आक्सीकारक सभी तरफ से बन्द एक में जलते हैं। दहन की इस क्रिया में प्रायः हवा ही का काम करती है। जिस बन्द कक्ष में दहन होता है उसे दहन कक्ष) कहते हैं।

दहन की यह अभिक्रिया ऊष्माक्षेपी exothermic reaction होती है जो उच्च ताप एवं दाब वाली गैसें उत्पन्न करती है। ये गैसें दहन कक्ष में लगे हुए एक पिस्टन को धकेलती हुए फैलतीं है। पिस्टन एक कनेक्टिंग रॉड के माध्यम से एक क्रेंक शाफ्टघुमने वाली छड़ से जुड़ा होता है, इस प्रकार जब पिस्टन नीचे की तरफ जाता है तो कनेक्टिंग रॉड से जुड़ी क्रेंक शाफ्ट घुमने लगती है, इस प्रकार ईंधन की रासायनिक ऊर्जा पहले ऊष्मीय ऊर्जा में बदलती है और फिर ऊष्मीय ऊर्जा यांत्रिक उर्जा में बदल जाती है।

अन्तर्दहन इंजन के विपरीत बहिर्दहन इंजन, जैसे, वाष्प इंजन में कार्य करने वाला तरल जैसे वाष्प किसी अन्य कक्ष में किसी तरल को गरम करके प्राप्त किया जाता है। प्रायः पिस्टनयुक्त प्रत्यागामी इंजन, जिसमें कुछ-कुछ समयान्तराल के बाद दहन होता है लगातार नहीं, को ही अन्तर्दहन इंजन कहा जाता है किन्तु जेट इंजन, अधिकांश रॉकेट एवं अनेक गैस टर्बाइनें भी अन्तर्दहन इंजन की श्रेणी में आती हैं जिनमें दहन की क्रिया अनवरत रूप से चलती रहती है।

==

==
  • १८२३: सेमुअल ब्राउन ने औद्योगिक रूप से लागू करने के लिये पहला आंतरिक दहन इंजन पेटेंट कराया। यह एक संपीडन रहित और हारडनबर्ग द्वारा परिभाषित चक्र "लियोनार्डो सायकल" पर अधारित इंजन था।
  • १७वीं शताब्दी: अंग्रेजी आविष्कारक सैमुएल मोर्लैण्ड Samuel Morland ने पानी के पम्प चलाने के लिये बारूद का प्रयोग किया। इसे प्रथम अन्तर्दहन इंजन कहा जा सकता है।
  • १८०६: स्विट्जरलैण्ड के इंजीनियर फ्रैको आइजक रिवाज François Isaac de Rivaz ने हाइड्रोजन एवं ऑक्सीजन के मिश्रण से चलने वाला अंतर्दहन इंजन बनाया।
  • १८२४: फ्रांसीसी भौतिकशास्त्री सेडी कारनाट आदर्श उष्मीय इंजनों का उष्मागतिक सिद्धांत प्रतिपादित किया।
  • १८२६: एक अमेरिकी सेमुअल मोरे दवाबरहित "गैस अथवा वाष्प इंजन." के लिये पेटेन्ट प्राप्त किया।
  • १८५४: इटली के नागरिक युजेनियो and फेलिस ने लन्दन में सबसे पहला कार्यकारी दक्षता का अन्तर्दहन इंजन पेटेन्ट करवाया।
  • १८९३ २३ फरवरी: रूडोल्फ डीजल ने डीजल इंजन का पेटेंट प्राप्त किया।
  • १८९२: रुडोल्फ डीजल ने कार्नो ऊष्मा इंजन प्रकार की मोटर विकसत की जिसमें कोयला-धूलि का दहन होता था।
  • १८९६: कार्ल बेन्ज ने बॉक्सर इंजन का आविष्कार किया इसे क्षैतिजतः विरोधित इंजन भी कहते हैं, इसमें संगत पिस्टन शीर्ष मृत सिरे केन्द्पर एक ही समय पर पहुँचकर एकदूसरे के संवेग को सन्तुलित कर देते हैं।
  • १९००: रूडोल्फ डीजल ने १९०० एक्सपोसिशन यूनीवर्सेल में डीजल इंजन का प्रदर्शन किया, जिसमें मूँगफली का तेल प्रयुक्त किया गया।
  • १९००: विल्हें मेबैक् ने एक इंजन अभिकल्पित किया जिसे डैमलर मोटरेन गेसेल्शैफ्ट में बनाया गया- इसमें एमिल जेलिनेक के विशेषीकरणों को प्रयुक्त किया गया जिन्होंने इसका नाम डैम्लर मर्सीडीस रखना पसंद किया अपनी पुत्री के नाम पर। १९०२ में उस इंजन वाले वाहनों का उत्पादन डीएमजी ने शुरू किया।
  • १९०८: न्यूजीलैंड के आविष्कारक अर्नेस्ट गॉडवार्ड ने इन्वर्कार्गिल् में मोटरसाइकलों का व्यापार शुरू किया और आयातित द्विचक्रियों में अपने खुद के आविष्कार - पेट्रोल मितव्ययकारक इकोनॉमाइसर को लगाना शुरू किया उनका मितव्ययकारक कारों में भी उतना ही अच्छा चला जितना मोटरसाइकलों में।
                                     

1. अन्तर्दहन इंजन का कार्य सिद्धान्त

अंतर्दहन इंजन के आविष्कार का विचार मध्ययुग से प्रारंभ हुआ। १६८० ई. में डच वैज्ञानिक क्रिश्चियन हाइगेस ने एक ऊर्ध्व सिलिंडर और पिस्टन के इंजन का सुझाव रखा था, जिसमें बारूद के विस्फोट से पिस्टन ऊपर चढ़े। किंतु इस तरह का इंजन कभी काम में नहीं आया। बाद में दहनशील गैसों तथा खनिज तैलों के आविष्कार से उनका सुझाव व्यावहारिक हो गया क्योंकि बारूद की जगह ईधन देने की समस्या सुलझ गई। लेकिन फिर भी इस वर्ग के इंजनों को व्यावहारिक उपयोगिता के अनुकूल बनाने में अनेक वर्षो के प्रायेगिक और सैद्धांतिक अध्ययन की आवश्यकता हुई।

अंतर्दहन इंजनों में ईधन के रूप में डीजल गाढ़े मिट्टी के तेल, पेट्रोल, ऐल्कोहल अथवा प्राकृतिक या कृत्रिम गैस इत्यादि का प्रयोग होता है। लेकिन साधारणत: पेट्रोल और डीजल का ही उपयोग होता है।

अंतर्दहन इंजन दो सिद्धांतो पर कार्य करते हैं - 1 चतुर्घात चक्और 2 द्विघात चक्र

                                     

1.1. अन्तर्दहन इंजन का कार्य सिद्धान्त चतुर्घात चक्र इंजन four stroke engine

फोर स्ट्रोक इंजन मैं चारों स्ट्रोक सक्सन,कम्प्रेसन,पावर व ऐग्ज़ास्ट की प्रकिया पूर्ण होती है। तथा पावर जब बनती है जब पिस्टन दो बार Up and down होता है। मतलब क्रेंकशाफ्ट दो बार घूमती 720° है। फोर स्ट्रोक इंजन मै फ्यूल की बचत होती है।

                                     

2. एकदिश और उभयदिश सक्रिय इंजन

अंतर्दहन इंजनों में और आगे-पीछे चलनेवाले पिस्टन युक्त अन्य इंजनों में भी दो जातियाँ होती हैं, एकदिश सक्रिय सिंगल-ऐक्टिंग इंजन और उभयदिश सक्रिय डबल-ऐक्टिंग इंजन। एकदिश सक्रिय इंजनों में कार्यकारी पदार्थ पिस्टन के केवल एक ओर रहता है; उभयदिश सक्रिय इंजनों में दोनों ओर। उनमें सिलिंडर लंबा रहता है और पिस्टन के दोनों के भागों में चूषण, संपीडन इत्यादि होता रहता है। अधिकांश अंतर्दह इंजन एकदिश सक्रिय होते हैं। उदाहरणत, मोटरकारों में इंजन इसी प्रकार के होते हैं। परंतु बहुतेरे बड़े इंजन उभयदिश सक्रिय बनाए जाते हैं। एकदिश सक्रिय इंजन की अपेक्षा उभयदिश सक्रिय इंजन में लगभग दुगुनी ऊर्जा उत्पन्न होती है और नाप में नाममात्र ही वृद्धि होती परंतु उभयदिश सक्रिय इंजनों के निर्माण में कई यांत्रिक कठिनाइयाँ पड़ती हैं। इसलिए केवल बड़ी नाव के इंजनों में ही उभयदिश सक्रिय इंजन लाभ दायक होते हैं। दूसरी ओर, वाष्प इंजन और वायु संपीडक साधारणत: उभयदिश सक्रिय बनाए जाते हैं, यद्यपि यह अनिवार्य नियम नहीं है।

                                     

3. ओटो चक्र Otto Cycle

आज के अधिकांश अंतर्दहन इंजन ओटो चक्र ओटो साइकिल के सिद्धांत पर बनते हैं। गणना की सरलता के लिए हम कल्पना कर सकते हैं कि चक्र में दो क्रियाएँ समऐन्ट्रॉपिक आइसेंट्रॉपकि और दो स्थिरआयतनिक कॉन्स्टैंट वॉल्यूम होती हैं।

कल्पित चक्र के विश्लेषण में सुगमता के लिए मान लिया जाता है कि कार्यकारी पदार्थ केवल वायु है। यह भी मान लिया जाता है कि न तो चूषण आघात होता है ओर न निकास आघात। इस विश्लेषण को वायुमात्रिक विश्लेषण कहते हैं। वास्तविक इंजन में गैसों का निकास होता है। उसके बदले माना जाता है कि स्थिर आयतन पर गैसें ठंडी हो जाती हैं। कार्य उतना ही होता है घर्षण की उपेक्षा करने पर, चाहे गैसों का निकास किया जाए, चाहे उन्हें ठंडा किया जाए प्रत्येक दशा में ईधन के जलने से उत्पन्न उष्मा उतनी ही रहती है।

                                     

4. शक्ति और कार्य के मात्रक

जिस दर से ऊर्जा कार्य में रूपांतरित होती है उसे शक्ति कहते हैं; यह समय के एकक में कार्य की मात्रा है। वह कार्य जो आगे पीछे चलनेवाले पिस्टन युक्त इंजन के पिस्टन पर किया जाता है, निर्दिष्ट कर्म इंडिकेटेड वर्क कहलाता है और निर्दिष्ट कार्य के अनुसार गणना की हुई शक्ति निर्दिष्ट अश्वशक्ति इंडिकेटेड हॉर्स पावर कहलाती है। इंजन की धुरी तक जितना कार्य पहुँचता है वह धुरी कार्य शैफ्ट वर्क अथवा ब्रेक कार्य ब्रेक वर्क कहलाता है और इस कार्य के अनुसार उत्पन्न शक्ति को ब्रेक अश्वशक्ति ब्रेक हॉर्स पावर कहते हैं।

                                     

5. निर्धारित शक्ति

किसी अंतर्दहन इंजन के कितना शक्ति प्राप्त हो सकती है, इसे निर्धारित करने के लिए कई आधार लिए जा सकते हैं। मोटरकार इंजन बनानेवाले अपने विज्ञापनों में अपने इंजन की महत्तम शक्ति बताते हैं, जो तब प्राप्त होता है जब समस्त परिस्थितियाँ महत्तम रूप से अनुकूल होती हैं। परंतु औद्योगिक इंजन का निर्माता अपने इंजनों की शक्ति साधारणत: लगभग महत्तम उष्मीय दक्षता maximum thermal efficiency पर उत्पन्न होनेवाली शक्ति के अनुसार निर्धारित करते हैं। औद्योगिक इंजनों का सामर्थ्य इसी प्रकार निर्धारित करना उत्तम भी है। कारण यह है कि यदि इंजन निर्धारित सामर्थ्य पर चलाए जाएँगे तो ईंधन का खर्च न्यूनतम होगा और फिर आवश्यकता होने पर कुछ समय तक वे अधिक सामर्थ्य पर भी काम कर सकेंगे।

                                     

6. सुपरचार्जर

प्रत्येक अंतर्दहन इंजन में प्राप्त शक्ति इसपर निर्भर रहता है कि पिस्टन की एक दौड़ में जितना ईधन-वायु-मिश्रण सिलिंडर में प्रविष्ट होता है उसका द्रव्यमान क्या है। इसलिए जिन कारणों से यह द्रव्यमान घटेगा उनसे इंजन का सामर्थ्य घटेगा। वास्तविक इंजन में ईधन-वायु-मिश्रण को घटाने बढ़ानेवाले यंत्र से, जिसे प्ररोध थ्रटल कहते हैं, तथा अंतर्ग्रहण और निकास वाल्वों से मिश्रण की गति में कुछ बाधा पड़ती है। इसलिए मिश्रण को चूसते समय सिलिंडर में दाब वायुमंडलीय दाब से कम ही रह जाती है। फलत: उतना मिश्रण नहीं घुस पाता जितना सैद्धांतिक गणना में माना जाता है। सैद्धांतिक गणना में तो मान लिया जाता है कि सिलिंडर के भीतर मिश्रण की दाब वायुमंडलीय दाब के बराबर है। फिर, सिलिंडर का भीतरी पृष्ठ, तथा मिश्रणपूर्ण अपेक्षाकृत तप्त रहते हैं। इसलिए सिलिंडर में पहुँचने पर ईधन मिश्रण गरम हो जाता है। आयतन ताप-दाब नियम के अनुसार ताप बढ़ने के कारण सिलिंडर में मिश्रण का द्रव्यमान उस द्रव्यमान की अपेक्षा कम होता है जो ठंडे रहने पर होता। फिर, वास्तविक इंजन में सिलिंडर के छूट स्थान क्लियरैंस स्पेस में, निकास घात के पूर्ण हो जाने पर भी, गैसें आदि वायुमंडलीय दाब से अधिक दाब पर रह जाती हैं और चूषण घात के आरंभ में वे सिलिंडर में फैल जाती हैं। इनका दाब वायुमंडलीय दाब के बराबर हो जाने के बाद ही चूषण का आरंभ होता है। इससे भी सिद्धांततः परिकलित मात्रा से कम ही मिश्रण सिलिंडर में प्रवेश करता है। अंत में, इंजन समुद्रतल से जितनी ही अधिक ऊँचाई पर काम करेगा वहाँ वायुमंडलीय दाब उतनी ही कम होगी। इसलिए द्रव्यमान के अनुसार जितना मिश्रण सिलिंडर में समुद्रतल पर प्रविष्ट हो सकेगा उससे कम ही मिश्रण ऊँचे स्थलों में प्रविष्ट हो पाएगा।

अंतर्दहन इंजन की आयतनीय दक्षता केवल ऊँचाई बढ़ने पर ही नहीं घटती, वह इंजन की चाल स्पीड बढ़ने पर भी घटती है। इसलिए दौड़ प्रतियोगिता में प्रयुक्त इंजनों और अधिक ऊँचाई पर काम करनेवाले इंजनों में बहुधा सुपरचार्जर लगा दिया जाता है। इस यंत्र में एक छोटा सा अपकेन्द्रीय पंखा ब्लोअर रहता है जो ईधन-वायु-मिश्रण को सिलिंडर में वायुमंडलीय दाब के कुछ अधिक दाब पर ठूँस देता है। सुपरचार्जर लगाने से आयतनीय दक्षता बढ़ जाती है, यहाँ तक कि यह 1 से अधिक भी हो जा सकती है।

                                     

7. संपीडन अनुपात और ओटो इंजनों में अधिस्फोटन detonation

ओटो चक्र के विश्लेषण में यह दिखाया जा चुका है कि संपीडन अनुपात compression ratio बढ़ाने से दक्षता बढ़ती है। वास्तविक इंजनों में भी यही प्रवृत्ति दिखाई पड़ती है। ओटो चक्र के अनुसार काम करनेवाले इंजनों में चूषण आघात में वायु के साथ ही ईधन भी घुसता है और इसलिए संपीडन आघात में भी वह वर्तमान रहता है। जब संपीडन अनुपात बहुत बड़ा रखा जाता है तो संपीडन के एक नियत मात्रा से अधिक होते ही ईधन मिश्रण में अधिस्फोट होता है, अर्थात् ईधन स्वयं, बिना स्पार्क प्लग से चिनगारी आए, जल उठता है। फिर, यदि ऐसा न भी हुआ, तो स्पार्क प्लग की चिनगारी से जलना आरंभ होने पर संपीडन लहरें उठती हैं, जो चिनगारी के पास जलते हुए मिश्रण के आगे आगे चलती हैं। इन संपीडन लहरों के कारण चिनगारी से दूर का मिश्रण स्वयं जल उठ सकता है, जो अवांछनीय है। फिर, सिलिंडर में कहीं पेट्रोल आदि के जले अवशेष के दहकते रहने से, अथवा पिस्टन के भीतर बढ़े पेट्रोल आदि के जले अवशेष के दहकते रहने से, अथवा पिस्टन के भीतर बढ़े किसी अवयव की तप्त नोक से भी ईधन मिश्रण समय के पहले जल सकता है।

जब कभी संपीडित मिश्रण समय से पहले जल उठता है तो उसका यह जलना अधिस्फोटक डिटोनेटिंग होता है। यह कान से सुनाई पड़ता है - जान पड़ता है कि किसी धातु को हथौड़े से ठोंका जा रहा है। शीघ्रतापूर्वक जलने वाले ईधनों में अधिस्फोट की आशंका अधिक रहती है। पिछली कुछ दशाब्दियों में कई नवीन खोजें हुई हैं, जिनसे बिना अधिस्फोट हुए संपीडन अनुपात अधिक बड़ा रखा जा सकता है। उदाहरणत:

  • दहनकक्ष के आसपास के भागों को जैसे स्पार्क प्लग, वाल्व मुंड Valve Seat आदि को) अधिक ठंडा रखने का प्रबंध किया गया है।
  • दहनकक्ष के भीतरी भाग को अधिक चिकना बनाया जाता है, जिससे कोई ऐसे दाने नहीं रह पाते जो तप्त होकर लाल हो जायें और ईधन-मिश्रण का जलना आरंभ कर दें; तथा
  • ऐसे ईधन बनागए हैं जो अधिक धीरे धीरे जलते हैं, जैसे बेंज़ोल और पेट्रोल के मिश्रण, पॉलीमेराइज़ किया हुआ पेट्रोल और ऐसा पेट्रोल जिसमें थोड़ी मात्रा में टेट्रा-एथिल-लेड मिला रहता है;
  • दहनकक्ष के उस भाग को, जो पिस्टन के ऊपर रहता है, ऐसा नवीन रूप दिया गया है कि अधिस्फोट कम हो;
  • दहनकक्ष से उष्मा के निकलने का वेग बढ़ा दिया गया है। यह काम इंजन के माथे को पहले से पतला और अधिक दृढ़ धातुओं का जैसे ऐल्युमिनियम की मिश्रधातु य काँसे का बनाकर किया गया है, जो उष्मा के अधिक अच्छे चालक हैं। साथ ही पिस्टन भी ऐसे पदार्थो का बनता है जो उष्मा के अच्छे चालक होते हैं। काँसे के माथे Cylinder head बनाने से संपीडन अनुपात के बहुत अधिक रहने पर भी इंजन बिना अधिस्फोट के चलते है; इसका कारण यह है कि काँसा उष्मा का बहुत अच्छा चालक है। इसलिए उष्मा सिलिंडर से शीघ्रता से दूर होती रहती है। परंतु, बहुत शीघ्रता से उष्मा का दूर होना भी अवगुण है, क्योंकि इससे अधिक संपीडन के उद्देश्य की पूर्ति नहीं हो पाती। हमारा उद्देश्य सदा यह रहता है कि उष्मीय दक्षता बढ़े। परंतु कुछ इंजनों में इतनी उष्मा इधर उधर चली जाती है कि उष्मीय दक्षता बढ़ने के बदले घट जाती है। ऐल्यूमिनियम के माथे में कभी कभी यही दोष देखा जाता है।

सन् 1920-25 के लगभग मोटरकार के इंजनों में संपीडन अनुपात लगभग 4.5 रहता था; कभी-कभी तो यह 3.5 ही रहता था। वर्तमान समय में यह अनुपात 6.5 या कुछ अधिक रहता है; कुछ इंजनों में तो यह अनुपात 10 तक होता है।

                                     

8. अंतर्दहन इंजनों की त्वरा

इंजनों की त्वरा चाल, स्पीड साधारणत: चक्कर प्रति मिनट में बताई जाती है परंतु यह निर्धारित नहीं है कि कितने चक्कर प्रति मिनट रहने पर इंजन को इनमें से किस विशेष वर्ग में रखा जाए। इसके अतिरिक्त तीव्रगति वाष्प इंजन में जितने चक्कर प्रति मिनट होते हैं, वे अत्यंत मंदगति अंतर्दहन इंजन के चक्कर प्रति मिनट 4.000 या कुछ अधिक चक्कर का वेग रहता है, परंतु दौड़ की प्रतियोगिता Motor Racing के लिए बने इंजनों में चक्कर प्रति मिनट 6.000 के आसपास होते हैं। वे डीज़ल इंजन, जिनमें चक्कर प्रति मिनट लगभग 1.000 होते हैं तीव्रगति डीज़ल High Speed Diesel Engine कहलाते हैं। बड़ी नाप के सिलिंडरवाले इंजन छोटे सिलिंडरोंवाले इंजनों की अपेक्षा मंद गति से चलते हैं, क्योंकि बड़े पिस्टन भारी होते हैं और उनके चलन की दिशा बदलते समय इतना झटका लगता है कि उसे सँभालना कठिन होता है।

पिस्टन का वेग भी इंजनों की गति की सीमा निर्धारित करता है, क्योंकि पिस्टन का वेग बहुत बढ़ाने से इंजन घिसकर शीघ्र नष्ट हो जाता है। मोटरकार के इंजनों में पिस्टन-वेग अब 2.800 फुट प्रति मिनट या इससे भी कुछ अधिक रखा जाता है। डीज़ल इंजनों में पिस्टन का औसत वेग 1.000 और 1.200 फुट प्रति मिनट के बीच रहता है।

                                     

9. इंजन की नाप

इंजनों की नाप सिलिंडर के व्यास Bore और पिस्टन की दौड़Stroke से बताई जाती है। उदहारणत, 12-18 इंच के इंजन का अर्थ यह है कि सिलिंडर का व्यास 12 इंच है और पिस्टन की दौड़ 18 इंच है।

आधुनिक मोटरकार इंजनों में अपने उसी नाप के 20-30 वर्ष पहले के पूर्वजों की अपेक्षा कहीं अधिक सामर्थ्य रहता है। सामर्थ्य निम्नलिखित कारणों से बढ़ा है:

  • अधिक अच्छी अंतर्ग्ररहण नलिकाएँ, जिनसे विविध सिलिंडरों में अधिक बराबरी से ईधन मिश्रण पहुँचता है;
  • अधिक तीव्रगति इंजन, जिसका बनना अधिक शुद्ध निर्माण और चल भागों के अधिक उत्तम संतुलन से संभव हो सका है।
  • चल भागों का बढ़िया आसंजन फ़िट और अधिक अच्छी यांत्रिक रचना, जिससे घर्षण और घरघराहट दोनों में कमी होती है;
  • निकास वाल्व का कुछ देर में बंद होना, जिसके कारण जली गैसों को बाहर निकलने के लिए पर्याप्त समय मिल जाता है और वे अपने ही जडत्व से सिलिंडर से लगभग पूर्णत: निकल जाती हैं;
  • निकास वाल्व का कुछ शीघ्र खुल जाना, जिससे पिस्टन पर उल्टा दाब नहीं पड़ता और ऋणात्मक कार्य नहीं करना पड़ता;
  • अंतर्ग्रहण वाल्व का कुछ बाद में बंद होना, जिससे संपीडन आघात के पश्चात् पिस्टन के चल पड़ने पर भी आनेवाला ईंधन-मिश्रण अपनी जडत्व इनर्शिया से आता रहता है और इस प्रकार तीव्रगति इंजनों में पहले की अपेक्षा अब अधिक मिश्रण सिलिंडरों में घुस पाता है;
  • वाल्वों का अधिक ऊँचाई तक उठना और अंतर्ग्रहण छिद्र का बड़ा होना, जिससे ईधन मिश्रण के आने में कम द्रवघर्षण उत्पन्न होता है और इसलिए सिलिंडर में घुसनेवाले मिश्रण की तौल अधिक होती है;
                                     

10. वर्गीकरण

2:- आपरेशन के ऊष्मा चक्र के अनुसार:

  • लगातार दबाव या डीजल चक्र
  • लगातार वॉल्यूम या ओटो चक्र
  • मिश्रित या दोहरी चक्र

5:- सिलिंडरों की व्यवस्था के अनुसार:

  • V इंजन
  • ऊर्ध्वाधर इंजन
  • In-लाइन इंजन
  • रेडियल इंजन
  • क्षैतिज इंजन

7:- इंजन की गति के अनुसार:

  • मध्यम गति ४०० से ९०० rpm
  • कम गति ४०० rpm से नीचे
  • उच्च गति ९०० rpm से ऊपर

9- आवेदन के क्षेत्र के अनुसार:

  • स्टेशनरी इंजन
  • मोबाइल इंजन।
प्रत्यागामी इंजन reciprocating engine
  • छ: स्ट्रोक इंजन
  • चार स्ट्रोक इंजन
  • दो स्ट्रोक इंजन
घूर्णी इंजन rotary engine
  • गैस टरबाइन
  • जेट इंजन
  • वेंकल इंजन

शब्दकोश

अनुवाद
Free and no ads
no need to download or install

Pino - logical board game which is based on tactics and strategy. In general this is a remix of chess, checkers and corners. The game develops imagination, concentration, teaches how to solve tasks, plan their own actions and of course to think logically. It does not matter how much pieces you have, the main thing is how they are placement!

online intellectual game →